Enhancing Multi-Step Reasoning in Language Models with Synthetic Math Data Augmentation

Team: HP_Fighters

Presenter: Jieqing Mei

Candidate solutions for enhancing math reasoning

- Construct reasoning dataset
- Knowledge distillation^[1]
- Construct Knowledge Base for math problem solving^{[2][3]}

- Leverage tool to enhance inference performance
- [1] Li, Junlong, et al. "Codel/O: Condensing Reasoning Patterns via Code Input-Output Prediction." arXiv preprint arXiv:2502.07316 (2025). [2] Wang, Zeqing, et al. "Towards top-down reasoning: An explainable multi-agent approach for visual question answering." arXiv preprint arXiv:2311.17331 (2023).
- [3] Li, Hang, et al. "Knowledge tagging system on math questions via Ilms with flexible demonstration retriever." arXiv preprint arXiv:2406.13885 (2024).

Problem of existing math datasets

Existing Math Datasets (contain CoT / PoT)

BelleGroup/school_math_0.25M

TIGER-Lab/MathInstruct

```
Sides of a rectangular park are in the ratio 3: 2 and its area is 3750 sq m, the cost of fencing it at 50 ps per meter is?

Answer Choices: (A) Rs.122 (B) Rs.129 (C) Rs.125 (D) Rs.120 (E) Rs.121
```

A Let's solve the multi-choice question step by step. $3x * 2x = 3750 \Rightarrow x = 25 \ 2(75 + 50) = 250 \ m \ 250 * 1/2 = Rs.125$ The answer is C

Problem 1: lack of clear multi-step reasoning process

Problem 2: calculate only with model's own generalization ability

Solution

• Multi-step reasoning: simulate the human thinking process

Utilize Python code as computational tool

An example of Data Synthesis

Three implemented approaches for data synthesis

Using Prompt Engineering to Generate Math Questions

Pros: Generate math problems, reasoning steps efficiently from scratch.

Cons: Less diverse data with suboptimal quality, requiring manual review which remains time-consuming.

Few-Shot Learning & Manual Verification

Pros: Ensures diverse, high-quality math problems.

Cons: Labor-intensive and not scalable for large datasets.

Automatic Data Synthesis

Pros: Enables automated generation while ensuring answer accuracy through predefined datasets.

Cons: Limited by scarcity of high-quality math datasets and depended on existing datasets.

Results

model	math_100	gsm8k_1319	gsm8k_ja_1069
base_model	3(3%)	324(24.6%)	278(26%)
our model (submitted, with vIIm inference)	5(5%)	230(17.4%)	171(16%)
our model (local, with hg inference + python execution)	_	. 383(29%)	_

Approaches in progress

• Distill knowledge from SOTA open source LLM

Soft label generation is required, resulting in significant time costs

• Translate high quality math reasoning dataset

Demand amount of time to perform the translation task

Build a RAG component aimed at solving similar math problem

Thanks for your attention